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FARALLONES SHELF/SLOPE CIRCULATION STUDIES 
EXECUTIVE SUMMARY 

1. Introduction. 

A series of five research cruises were carried out during February, May, August, and 
November 1991 and February 1992 over the continental shelf and slope in the vicinity of the 
Farallon Islands, CA. The purpose of the five cruises was to describe the general circulation m 
the region throughout the year, particularly as it would affect the dispersal of sludge matenals to 
be released at five prospective dumpsites in the area. The approach during each cruise was to 
occupy a grid of closely spaced conductivity-temperature-depth (CTD) stations across the shelf 

and slope, while making continuous direct current observations using a hull-mounted acoustic 
Doppler current profiler (ADCP). The study was funded by the U.S. Environmental Protection 

Agency (EPA), Region 9, San Francisco, CA, and the Western Division, Naval Facilities 

Engineering Command (WESTDIV), San Bruno, CA. 
The primary instruments used in this study were the Neil Brown Instrument Systems (NBIS) 

Mark IE CTD and the RD Instruments hull-mounted ADCP, operating on a nominal frequency of 
150 kHz. The details of the CTD and ADCP calibration procedures are described in the five data 

reports for the cruises (Jessen et al., 1992a, 1992b, 1992c, 1992d; Rago et al., 1992). The CTD 

stations all covered the entire water column from surface to bottom. The ADCP data were 
collected as 3-min averages in 8-m bins using an 8-m pulse length, and reached the bottom or 
about 350 m, whichever was shallower. The vertical range of the ADCP signal is a function of 

sea state and varied somewhat from cruise to cruise. Wind data were collected from an 
anemometer mounted at 10 m height on the ship's mast and from offshore buoys maintained by 
the National Data Buoy Center (NDBC). The offshore buoys used were located near Bodega 
Bay to the north, within the Gulf of the Farallones, and near Half-Moon Bay and Monterey Bay 

to the south. 
The basic sampling plan consisted of five parallel transections 20 km apart across the 

continental shelf and slope near the Farallon Islands (Figure 1). Station spacing was not uniform 
by design along each transection.  Over the steep continental slope, the stations were spaced 

more closely together to obtain improved estimates of geostrophic velocity in this region. All 
five lines (labeled A-E) were sampled on all cruises, except for February 1992 when bad weather 
did not allow sampling along the E line. When time permitted, a separate, continuous ADCP 
track (solid lines) was steamed at the end of the cruise to gather data uninterrupted by the 
frequent stopping and turning required for the CTD casts. This track was steamed to various 

degrees of completion on each cruise, depending on the time available. These tracks were 



designated by assigning lowercase letters to the endpoints of each track. While the track 
locations were consistent, the endpoints were inadvertently given different letters on different 
cruises. Current meter moorings were also deployed at six locations along the B and D lines as 
part of this study, and the preliminary results from these instruments are summarized in a 

separate report (Noble and Ramp, 1992). 
Preliminary scientific analyses of each cruise were conducted and forwarded to the funding 

agencies as unpublished administrative documents along with the data reports. The purpose of 
this executive summary is to provide an overview of the collective results from all five surveys. 

The wind conditions and regional sea surface temperature are described first, followed by a basic 
description of the current variability over the continental shelf and slope. This will be followed 

by a water mass analysis and a comparison with historical data. 

2.  Climatology of the Gulf of the Farallones, 1991 

Meteorological conditions in the Gulf of the Farallones during the 1991 calendar year, when 
four of the five cruises occurred, were fairly representative of the seasonal cycle off central 
California (Nelson 1977). These conditions are represented by daily wind vectors, denoting the 
wind speed and direction at the four NDBC buoys moored off central California (Figure 2) near 
Bodega Bay (38.2°N, 123.3°W), the Gulf of the Farallones (37.8°N, 122.7°W), Half Moon Bay 
(37.4°N, 122.7°W), and Monterey Bay (36.8°N, 122.4°W). The wind vectors at the four NDBC 

buoys were visually coherent throughout the year (Figure 2), with winds at Half Moon Bay and 
Monterey Bay particularly well correlated. When wind reversals occurred, they typically were 

observed at all four locations. 
Included in the generally coherent wind field, however, are small-scale differences that reflect 

potentially important variations in mesoscale forcing to the coastal ocean, since they may induce 
oceanic variability on similar space scales. The wind at the Bodega Bay buoy generally was 
stronger and directed clockwise relative to that at stations to the south, in agreement with 
historical studies showing that wind speeds north of Pt. Reyes are stronger than those to the 
south (Nelson 1977). The change in direction at Bodega Bay is likely due to coastline orientation 
which tends to steer the winds: the coastline at Bodega Bay is oriented nearly north-south, while 

the coastline south of Pt. Reyes runs more southeastward. The winds at the Farallones buoy 
were relatively weaker and directed more eastward than winds measured to the north or south. 
The fact that much of the Gulf is located in the lee of PL Reyes may account for the lower wind 
speeds observed there. These differences have implications for the location and intensity of 
upwelling, and the subsequent advection of recently upwelled water along the shelf (Schwing et 
al. 1991). They also are important in establishing spatial variability in the degree of near-surface 



stratification and the generation of shear in the near-surface flow, both of which may play a 

critical role in driving the region's circulation. 
The seasonal variation in the wind was also similar to that reported by earlier authors 

(Halliwell and Allen, 1987). Winter winds were variable in speed and direction due to the 
passage of atmospheric cyclones and anticyclones moving onshore from over the Pacific. These 
conditions persisted until the end of March (day 90) with storm conditions slightly stronger at the 

northern buoys than at those to the south. In spring and early summer (day 90 to 215), winds 
were southeastward (upweUing favorable) with only occasional reversals or relaxations. These 

conditions generally establish an offshore-directed ocean surface current, which results in the 

upwelling of cool, saline, and nutrient-rich water near the coast Similar, though weaker, 
conditions continued through the late summer and fall, pending the onset of the following winter. 

Time series of water temperature, air temperature, north wind component, and atmospheric 

pressure at the Gulf of the Farallones buoy (Figure 3) show the influence of these seasonal 
changes. The larger variance in atmospheric pressure during the winter and early spring reflects 
the passage of the winter storms. The air temperature fluctuated about the 10°C mark until about 
day 140, when seasonal warming and cooling became evident. The sea surface temperature 
(SST) warmed during the first two months of the year then cooled due to strong upweUing until 
the beginning of June (day 140) when seasonal heating resumed. Fluctuations with periods of 
order 10 days, the approximate scale of the wind variability, are evident superimposed on all 
these seasonal patterns. Increases in the equatorward winds were well correlated with decreases 
in SST and vice versa (Figure 3). This fundamental upwelling dynamic has been observed by 

many other investigators (cf. Lentz, 1987). 
The shading indicates the dates of the four 1991 cruises (Figures 2 and 3). Moderate 

upwelling favorable winds were experienced during the February and November cruises. Strong 

upweUing favorable winds prevailed during the May cruise, and very light winds were 
experienced during the August cruise. In February 1992 the storm conditions experienced 
during the cruise (not shown) were quite different from 1991. Winds blew strongly from the 

southeast as three atmospheric cyclones passed through the area. 

3. SateUite sea surface temperature imagery 

SateUite AVHRR imagery data for dates during or near the cruises are included to provide 
information over a larger region than was sampled from the ship (Figure 4). Clear images were 

available for four of the five cruises, but were not available for the August 1991 cruise, when 
low clouds and fog prevailed during and for two weeks before and after the cruise. The raw 
AVHRR data were obtained in digital form from Ocean Imaging, San Diego, CA, and processed 



at the Naval Postgraduate School using the University of Miami DSP satellite processing 
software. The false color scheme to represent SST is the same for each image. The color for 
each even degree is shown in the temperature scale, while the color changes in the image are at 
0.35° C. Within each color the shading goes from dark to light as the temperature increases. 

All the images show complex patterns of SST and are rife with mesoscale features over both 

the shelf and slope. The 15 May thermal image (Figure 4b) shows distinctly cooler surface water 

than the other three images, a result of strong coastal upwelling during the spring season. A cold 
filament emanating from the upwelling center to the north of Point Reyes was visible in the 15 
May and 2 November (Figure 4c) images. The cooler water showed a bifurcated structure with 
one branch going offshore into deeper water and the other branch extending southwest along the 
shelf. While cold filaments off Point Reyes have not been well studied, these features resemble 
those observed farther to the north off Point Arena during the Coastal Transition Zone (CTZ) 
experiment (Brink and Cowles, 1991) and to the south off Pt. Aiio Nuevo (Tracy, 1990) and Pt. 

Sur (Traganza, et al., 1981; Breaker and Mooers, 1986). Cold filaments were not observed 

during the February cruises which were times when coastal upwelling was not occurring. The 

relatively cold water near Point Reyes during February 1992 contrasts with the warmer, 
poleward flowing water over the slope and was not a result of local upwelling. Wintertime 
studies off the central coast are sparse, but the wintertime lack of filaments basically agrees with 
the findings of Kosro et al., (1991). Other features of the imagery will be referred to 
subsequently to aid in describing the currents and water masses observed in the ADCP and 

hydrographic data. 

4. A description of the current variability over the continental shelf and slope. 

ADCP Data. 

The ADCP vectors show certain features which were consistent between all five cruises 
(Figure 5). The shelf currents (inshore of the Farallon Islands) were weaker and more variable 

than the currents over the continental slope for all five cruises (Figure 5a). The greater 
directional variability can be attributed to the tidal currents (Noble and Gelfenbaum, 1990) which 
contribute a greater fraction of the total current variance over the shelf than over the slope. The 
ADCP sampling was thus biased by the tides as the ship steamed along the cruise track. Some 

turning of the current vectors over the shelf at approximately tidal time scales can be seen at the 
inshore end of the B and C lines during Feb. 91 and Feb. 92 (Figure 5a, upper left and lower 
panel). The data can be used to make an improved estimate of the spatial variability of the tides, 
but a more sophisticated analysis than is presently available will be required to do this. The shelf 



waters within the bight between Point Reyes and Point Montara were also more sheltered from 
the wind stress, which increased offshore regardless of direction, i.e., the direct forcing by wind 
was weaker over the continental shelf than over the slope. Since the shelf here is mostly less 
than 80 m deep, the shelf currents were also more damped by bottom friction than the slope 
currents. These factors combined to produce the generally weaker currents observed over the 

shelf. 
Vertical shear was generally weak over the Farallones shelf, with bottom currents slightly 

weaker, but in the same direction as the surface currents. The across- and along-transect velocity 
for the February and August 1991 ab lines, which run parallel to the shore over the shelf (Figure 
6) are typical of the magnitude of vertical shear observed. The lack of vertical shear once again 
suggests domination by the barotropic tides, and differs somewhat from the observations made 
during the Coastal Ocean Dynamics Experiment (CODE) along a more exposed stretch of 
coastline between Point Reyes and Point Arena. Wind forcing was more evident there and 
current reversals with depth were common over the outer shelf, offshore of the 80 m isobath 

(Winant et al., 1987; Kosro, 1987). 
Currents over the slope showed more consistent patterns within each cruise but differed 

between cruises (Figure 5). The general tendency was for poleward flow over the slope with the 
exception of the November cruise, when the California Undercurrent1 was not evident. The 
currents during February 91, August 91, and February 92 were poleward over almost the entire 
study area. This may be because the dynamic trough separating the southward California 
Current flow from the poleward flow inshore (Lynn et al., 1982; Chelton and Kosro, 1987) was 
located to the west of the study region. High speed (25 - 50 cm s"1) poleward jets were 
sometimes observed (Figures 5b and 7) which represent the core of the California Undercurrent. 

These occurred at 75 -100 m depth in the main thermocline and were shallower than the 
Undercurrent core observed farther south off Point Sur (Tisch et al., 1992) and off southern 
California (Lynn and Simpson, 1987). The orientation of the poleward jet varied somewhat 
from section to section, this being particularly clear at the 75 and 200 m (Figures 5b and c) 
depths in the August 1991 data. This may have been a result of topographic steering or temporal 
variability. Meandering of the core was observed during the August cruise. The poleward flows 
were evident during a variety of surface wind conditions, which were strongly equatorward 
during February 91, weak during August 91, and strongly poleward during February 92. The 

1   In this summary, no  attempt has been made to distinguish the Davidson  Inshore 
Current  from  the  California  Undercurrent.     While  the   authors  are  not  claiming  that 
the  currents   are  the  same,  their  characteristic  northward   flow  is  called  the 
Undercurrent. 



poleward winds during February 92 did enhance the poleward flow near the surface and 
obscured the subsurface maximum over much of the section. 

The May 1991 slope currents were slightly different, in that an alongshore convergence and 
offshore flow was evident in the 15 - 23 m currents. The convergence weakened with depth 
(Figure 5b) where the flow tendency was once again towards poleward flow. At 75 m there was 
equatorward flow in the northwest comer of the study area. 

No significant poleward flow was observed during the October-November cruise when the 
California Undercurrent was absent and the slope currents were predominantly towards the 
southwest A weak eddy was centered over the slope near 37° 30' N, 123° 10" W and may have 
disrupted the flow. The lack of an Undercurrent during this cruise is a subject of continuing 
investigation. 

The classical seasonal signal to the California Undercurrent / Davidson Current has been 
described by Hickey (1979), Chelton (1984), and Lynn and Simpson (1987). Off central 
California northward geostrophic velocities over the slope and extending out as far as 100 km 
have been described year-round, except April, based on CalCOFI data (Wyllie, 1966; Lynn et 
al., 1982; Lynn and Simpson, 1987; Hickey, 1979). With an assumption of no flow at 500 db, 
these data suggest that the strongest poleward flow (10-14 cm s"1) should be present during 

November-January when the speed maximum is located close to the surface. Poleward flow 
then weakens in February and during March-May nearshore poleward flow may be entirely 
absent During June-August, a subsurface maximum of order 2-5 cm s*1 centered at 200-300 m 
depth is suggested. The core of the Undercurrent then strengthens and shoals during September- 
October. 

The data presented here are in partial agreement with this historical scenario. Poleward flow 
over the slope certainly dominates our results but the observed speeds were greater than 
suggested by the historical data, as expected when comparing instantaneous, high-resolution 
values with lower resolution, long-term averaged data. The conditions observed during 
individual cruises do not mimic the historical seasonal pattern but rather depend more on the 

wind stress and mesoscale features present at the time, in agreement with observations by Tisch 
et al. (1992). Perhaps the most interesting contrast is that the classical picture of a surface- 
trapped equatorward flow overlaying a well-defined poleward undercurrent was never observed 
in the Farallones data set. The flow direction observed by the ADCP over the slope, while 
strongly sheared in the vertical, did not change sign over the water column. We speculate, as 
mentioned earlier, that the equatorward flowing California Current waters must have been located 
offshore of the study region. 

Dynamic Thickness. 



The dynamic height method represents an alternative way of examining the velocity field and 
depicts the fraction of the flow which is in geostrophic equilibrium with the mass field. The 
dynamic thickness of the 200-500 dbar level was used to study seasonal fluctuations of the 
California Undercurrent using the CalCOFI data (Chelton, 1984).. Currents flow along the 

dynamic height contours with the dynamic high on the right. The thickness ranged from 38 dyn 
cm in May 91 to 45 dyn cm in February 92 (Figure 8b). The Undercurrent dominated the 
circulation pattern in August 91 and February 92, with poleward flow indicated at all stations 
deep enough to allow the calculation. In May 91, the Undercurrent appeared only over the upper 

slope, apparently turning offshore along the northern side of the ridge. In February 91, the 
dynamic thickness was nearly uniform and in November 91, equatorward flow appeared over 
much of the region, flowing offshore along the dynamic ridge. 

These patterns were not unlike flow depicted by the available ADCP vectors at the 200 m 
depth (Figure 5c). Weak poleward flow was indicated in February, strong, meandering 
poleward flow in August, and a distinctive offshore turning of the flow in October-November. 
The meandering flow in August seemed to follow the bottom topography. The ADCP sampling 

during May 91 and February 92 were not adequate for a rigorous comparison with the dynamic 

thickness data. 
The dynamic thickness of the upper (0-200 dbar) layer (Figure 8a) responded most strongly 

to coastal upwelling and equatorward acceleration of the California Current The thickness of 
this layer ranged from 32 dyn cm in May 91 to 52 dyn cm in February 92. The low dynamic 
thickness during May indicates the presence of anomalous dense water during this time, and 
explanations for this are sought in the water mass section. Strong equatorward flow occurred in 
May and August 91, the former stronger and southeastward, the latter southward. Poleward 
flow over the survey region was observed in February 92. Gradients were weakest in February 

and November 91 when there was no clear pattern. Weak eddies seem to be present during these 
times, one centered near 37° 40' N, 123° 20' W during February and another near 37° 20 N, 
123° 25' W during November. The latter eddy was co-located with a weak warm feature in the 2 

November SST imagery (Figure 4c). 
Unlike the 200 m level, the currents indicated by the dynamic height calculation do not agree 

well with the ADCP data. The simplest explanation for this is that the geostrophic currents were 
calculated relative to the 200 dbar level which was clearly not a level surface. The value of the 
calculation lies in showing the baroclinic contribution to the flow. 

Surface Drifters. 
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Drifting buoys provide a different way of examining the mean and mesoscale motions in the 
ocean. These "holey-sock" drifters were drogued at 10 m depth, had a very low surface drag 
area, and represent the flow in the upper mixed layer. Four satellite-tracked drifting buoys 
(Figure 9) were deployed near 37° 45' N, 123° 30' W, the offshore comer of the study region, 
one each during the May 91 through February 92 cruises.   Positions were determined and 
transmitted to shore using the ARGOS satellite-based system, which is part of the NOAA polar 
orbiting satellite system and returns 6-8 fixes per day at 38° north. The May and August buoys 
each initially moved offshore, then moved southward to around 36° 30' N where they moved 
onshore about 100 km before resuming their southward path. These paths were quite similar to 

those observed during the Coastal Transition Zone Experiment (Brink et al., 1991). The fact that 
the May buoy moved and remained farther offshore than the August buoy is likely due to 
stronger upwelling and more energetic offshore jets during May than during August The 

November buoy initially moved southward before becoming entrained in a series of eddies which 
transported the drifter far offshore.   The February 1992 buoy moved northward and onshore 
steadily, in agreement with the ADCP vectors from the 15-23 m level (Figure 5a). The strong 
poleward winds during this time would drive the near-surface current poleward and onshore 
(downwelling favorable). This is historically the time of the Davidson inshore current, a broad 
poleward flow over the entire continental shelf and slope. The drifter's reversal to a southward 
track on day 419 followed a shift to equatorward wind stress. 

5.  Water Mass Analysis. 

T-S Properties 

A composite T-S diagram for the five cruises illustrates the observed water mass variability 
(Figure 10a). Below 4.0°C and greater than 34.5 psu Pacific Common Water is found which has 

a stable T-S relationship throughout the North Pacific. Mantyla (1980) notes that the natural 
salinity variation in the deep Pacific north of the equator is only about 0.02 psu; the variability 
observed in these waters (Figure 10a), about 0.005 - 0.008 psu, is likely due to the accuracy of 
our salinity calibration techniques. 

Between 4.8 and 7.0°C (corresponding to density anomalies of 26.55 and 27.2 kg nr3), 
contrasting T-S properties associated with Subarctic Intermediate Water (found offshore in the 
California Current) and Equatorial Water (found over the slope in the California Undercurrent) 
are found. Horizontal mixing between these water types occurs, resulting in greater variability of 
salinity along an isopycnal than occurs either in deeper waters or in waters at the base of the 
halocline. Subarctic waters were associated with one cast, station 49 on 20 May 1992, and the 



salinity contrast on this cast was greatest at a density anomaly of 26.75 kg nr3, resulting in a 
salinity variation of 0.25 psu on this isopycnal for all data. Although the horizontal scale of this 
intrusion of Subarctic water was not resolved, it is indicative of the active mixing which must 
occur at these depths in the region of the dump site. 

Upper ocean T-S properties are shown in Figure 10b, where the scales of Figure 10a have 

been expanded to focus on the upper ocean. Although there is a great deal of variability in these 
waters on a given cruise, variability between cruises can be discerned. The May 1991 cruise is 
associated with cool, relatively fresh water that appears as a mode from 8.0°C, 33.9 psu to 
9.0°C, 33.6 psu. Other data fall along a curve extending from 8.7°C, 34.0 psu to 16.0°C, 34.4 
psu. October 1991 and February 1992 data cover about the same domain, extending to about 

14.0°C, while February 1991 data are generally cooler than 12.5°C. August 1991 data had the 
greatest temperature range, extending to 17.2°C, and for temperatures warmer than 10.0°C, the 
greatest salinity range with the mean about 0.1 psu saltier than other months. 

We believe that we observed waters which originated in San Francisco Bay at Stations 19 
and 20 in February 1991, at Station 40 in August and at Station 21 in early November (Figure 
10b). It is difficult to distinguish these waters, based on T-S properties, from those found 
offshore. The signature of the water mass boundary between inshore surface waters and surface 
California Current Waters is that of a horizontal line on the T-S diagram, i.e. along 15.5°C in 
August and along 13.0°C in February 1992. 

Distribution of Upwelled, Offshore, and San Francisco Bay Water 

During most of the surveys, near-surface water was some admixture of three primary water 
types; 1) recently upwelled water, whose source for the Gulf of the Farallones is primarily to the 
north of Pt. Reyes, 2) offshore water, whose signature is that of the large-scale California 
Current System, and 3) outflow from San Francisco Bay. These are revealed in the 
hydrographic surveys and the AVHRR satellite sea surface temperature imagery; the respective 
sources of these water types are suggested from the shipboard ADCP data. The characteristics 
and importance of each water type in the Gulf varies seasonally and on shorter time scales. 

The May 1991 cruise represents the conditions observed during strong, upwelling favorable 

winds (Figure 11). The source of the cold, salty, freshly upwelled water was located to the 
north of Point Reyes, and the coldest, saltiest water (< 9.25°C, > 33.80 psu) was observed in the 
northeast corner of the sample grid. As suggested by the satellite imagery (Figure 4b) the 
upwelled water followed two paths southward, one over the shelf and another farther offshore. 
This water warmed and freshened as it followed these paths, and is seen in the surface plots as 
the water with temperature < 9.50°C and salinity >33.60 psu. This upwelled water makes a clear 
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contrast in the surface plots with the offshore water which was both warmer and fresher along 
the entire offshore boundary of the sample grid The shape of the isopycnals (Figure 1 lc) 
closely followed that of the isotherms and isohalines, and the density increased offshore. 

Non-upwelling conditions under calm winds are illustrated by the February 1991 cruise 
(Figure 12). The coldest water was still in the northeast comer but lacked the accompanying 
salinity signal characteristic of coastal upwelling. The salinity was nearly isohaline except for the 
influence of the Bay outflow, particularly at stations 19 and 20 (Figure 12b) where salinities less 
than 33.00 psu were observed. Water discharging into the Gulf of the Farallones through the 
Golden Gate is less saline than the water in the Gulf due to the river input into San Francisco 
Bay. The long-term average salinity at S.E. Farallon Island is 33.4 psu whereas at Fort Point on 
the south side of the Golden Gate it is 29.9 psu (Peterson et al., 1989). Historically, salinities at 
both locations are lowest during winter and spring when the delta outflow is the highest. The 

outflow signal was quite shallow (< 20 m) and was not evident at 75 m depth. Since the Bay 
outflow was much warmer than the ambient waters, it can also be seen in the SST imagery 
(Figure 4a). No strong boundaries were present offshore during the February 1991 cruise. The 
isopycnals followed salinity in the southern half of the grid and increased offshore, but followed 
temperature and decreased offshore in the northern half of the grid. 

The surface salinity plots for the other three cruises are also shown to illustrate the location of 
the water masses on the T-S plot (Figure 10b) which were quite close in T-S space but 
geographically separated. The Bay outflow was observed to the north of the Golden Gate during 
August (Figure 13a), directly off the Golden Gate during November (Figure 13b), and to the 
south and farther offshore during February 1991 (Figure 12b).  There is no obvious explanation 
for this, but the distribution may be influenced by the prevailing nearshore wind stress. There is 

likely insufficient volume in the plume to create a true buoyancy driven flow (J. Largier, personal 
communication). None of the observed plumes extended very far offshore, likely due to the 
drought conditions presently occurring in the western U.S. The Bay outflow has been observed 
as far as 64 km offshore in the past (Peterson et al., 1989). The outflow was not observed 
during May 1991 or February 1992 and this was likely due to the strong wind stress throughout 
these two cruises that mixed the signal away. 

The dominant feature of the February 1992 plot was the strong front offshore of the 1000 m 
isobath between warm, salty water inshore and colder, fresher water offshore. The strongest 
signal was in salinity and the front was accompanied by a decrease in density offshore. A 
similar, but weaker front was observed during the August 1991 cruise (Figure 13a). The waters 
on the offshore side of these fronts are the water types contained within the dashed circles in 
Figure 10b, and are well separated geographically from the neighboring Bay waters on the T-S 

plot. The satellite imagery for February (Figure 4d) shows this front clearly, and its scale 



11 

suggests a water mass boundary rather than a mesoscale eddy or filament. This boundary was 
anomalously close to shore, a possible result of ENSO conditions during February 1992 (see 
next section). 

6. The ENSO Influence and Comparison with Historical Data. 

Preliminary analysis of the individual cruises showed that some of the data differed markedly 
from the historical means. To examine this further, average values of the temperature and 
salinity were computed at each of the standard depths (20, 80,200, and 500 m) for the outer 
slope, inner slope, and outer shelf regions (Table 1, Figure 14) for comparison with the long- 
term historical means. The outer slope values are averaged over stations 9,12, and 29; the inner 
slope values were averaged over stations 14, 26,27, and 34; and the shelf values were averaged 
over stations 4, 5,15, and 17. For comparison, the historical values from Churgin and 
Halminski (1974) were used for each depth. These represent 50-year averages, but most of the 
data are from 1950 - 1970. The data are all from offshore of the Farallon Islands and are not 
shown on the shelf station plot 

The temperature and salinity values at the 500 m level agreed well with the historical values 
and showed no consistent patterns of deviation. This provides confidence that there were no 
serious calibration problems with the new Farallones data set The 20 m level is subject to the 
vagaries of mixed layer dynamics and short-term variability and is a less robust indicator of 
interannual variability than the 80 and 200 m levels, but the patterns that emerged there were 
generally consistent with the deeper levels. 

The largest deviations from the historical means occurred during the May cruise when the 
water was anomalously cold and salty at both the inner and outer slope stations. The largest 
deviations were at the inner slope stations when the thermal anomalies were -2.30, -1.04, and 
-0.30 °C at 20, 80, and 200 m respectively. The corresponding salinity anomalies were 0.31, 
0.31, and 0.09 psu at the same depths. During August, November, and the following February 
the water became progressively warmer and fresher in all three regions with the result that in 
February 1992, the water was anomalously warm and fresh relative to the historical means. The 
anomalies were similar over the inner and outer slope, but were slightly greater over the inner 

slope, and greater at 80 and 200 m than near the surface (20 m). The thermal anomalies over the 
inner slope were 1.02,1.34, and 1.21 °C at 20, 80, and 200 m respectively. The corresponding 
salinity anomalies were -0.03, -0.06, and -0.19 psu at the same depths. All three subregions 
showed the same rather dramatic trend towards warmer, fresher water with time. 

The warm, fresh anomalies in February are suggestive of ENSO (El Nino-Southern 

Oscillation) conditions, consistent with observations in the equatorial Pacific that indicate 1991- 
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92 as an ENSO year. The existence of larger anomalies subsurface rather than at the surface is 
consistent with earlier observations in the OPTOMA study area (Rienecker and Mooers, 1986) 
and elsewhere in the eastern North Pacific (Cole and McLain, 1989). Of particular interest is the 
negative salinity anomalies, which suggest thermocline depression or anomalous onshore 
transport of North Pacific Central Water rather than massive poleward advection as the primary 
mechanism for the anomalous warming. The latter mechanism was thought to be important 
during the 1982-83 ENSO event (Simpson, 1983,1984; Lynn, 1983). The cold, salty 
anomalies during May are harder to understand. The water is always colder and saltier in May 
than during other times of the year (Figure 14) but not nearly so much as during the 1991-92 

year. These water properties can perhaps be explained by cold filaments off Point Reyes which 
sometimes flow through the northern half of the study region. These filaments contain recently 
upwelled cold, salty water, and displace the isotherms and isohalines to at least 500 m depth 

(Ramp et al., 1991; Huyer et al., 1991). The filaments are most common during late May, June, 

and July, and may influence the long term mean quantities near the Farallones during these 
months. The unusually strong anomalies during May 1991 would result if filament waters were 
actually present during sampling. A representative satellite image taken during the May cruise 
(Figure 4b) indicates that this was the case, as a cold filament is visible in the image crossing the 
northwest corner of the study area. 

These cold, salty anomalies may also be representative of anti-El Nino, or "La Nina" 
conditions which sometimes precede an El Nino event, although more research is needed to 
verify this hypothesis. Time series data from the current meter moorings should help determine 
if this is the case. 

7.  Conclusions 

The hydrographic, ADCP, satellite, and surface drifter data all confirm that the Gulf of 
Farallones outer shelf and slope region is a dynamically active area. Current and water mass 
variability was found on time scales covering seasonal (months), oceanic mesoscale (weeks) and 
meteorological forcing (days) scales. Data from the NDBC Gulf of Farallones buoy (Figures 2 

and 3) indicated oceanic response to local windstress variability while satellite data (Figure 4) and 
water mass variability (Figures 10-13) demonstrated the larger-scale oceanic variability. The 
southward movement over the shelf of upwelled water from north of Pt. Reyes and the 
northward flowing Undercurrent over the slope were the two strongest signals in the ADCP 
(Figures 5-7) and dynamic height (Figure 8) data. The proposed dumpsites are located such that 
they will be influenced by either of these currents. The absence of these features during some 
cruises and the presence of numerous mesoscale features in both the water mass distribution and 



13 

currents demonstrates that there was no overall dominant pattern to the water column at the 
proposed dumpsites. It is apparent that the outflow from San Francisco Bay is confined to the 
inner shelf and does not influence the water column at the dump sites. The drifter data from 
February 1992 (Figure 9) indicated that in special circumstances surface water from the dumpsite 
can be transported to the inner shelf in a couple of weeks, but this is not the dominant case. 

The combination of these data with the current data from the moored current meter arrays 
should provide a good estimate of the probable transport of the anticipated dredge material at the 

proposed outer shelf and slope dump sites. 
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TABLES 

Table 1      Mean temperature and salinity at four depths for three groups of selected stations 

representing the outer slope, inner slope and outer shelf portions of the study region. 

The outer slope values were derived from stations 9,12, and 29; the inner slope from 
stations 14, 26, 27, and 34; and the outer shelf from 4, 5,15, and 17. 
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TABLE 1 
MEAN TEMPERATURE AND SALINITY AT SELECTED DEPTH LEVELS 

OUTER SLOPE STATIONS 
20 m 80 m 200 m 500 m 

Temp Salinity Temp Salinity Temp  Salinity Temp Salinity 

Feb91 12.307 33.296 10.637 33.399 8.507 33.969 5.956 34.21 

May 10.777 33.187 9.05 33.636 7.583  34.064 5.473 34.242 

August 14.437 33.409 10.112 33.661 8.647  34.004 5.996 34.196 

Oct/Nov 13.032 33.303 10.173 33.469 8.508  34.02 5.721 34.196 

Feb92 13.204 33.116 11.868 33.368 8.863 33.947 6.149 34.192 

INNER SLOPE STATIONS 

Feb91 12.117 33.232 11.346 33.453 8.533 33.939 6.097 34.202 

May 9.125 33.546 8.54 33.839 7.519 34.097 5.785 34.229 

August 13.672 33.423 10.054 33.757 8.932 34.025 6.43 34.202 

Oct / Nov 12.315 33.299 9.938 33.532 8.746 33.989 5.798 34.191 

Feb92 13.244 33.183 11.994 33.375 9.366 33.81 6.348 34.186 

OUTER CONTINENTAL SHELF STATIONS 

Feb91 12.09 33.229 10.865 33.436 

May 9.43 33.475 8.21 33.915 

August 13.352 33.399 10.057 33.686 

Oct / Nov 12.415 33.352 10.357 33.578 

Feb92 13.414 33.268 12.424 33.342 
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LIST OF FIGURES 

Figure 1      CTD sampling grid station numbers and ADCP uninterrupted sampling lines for the 
Farallones Shelf and Slope circulation study cruises. The uppercase letters indicate the 

five across-shore transections and the lower case letters are turning points marking the 
end of each line for the ADCP sampling grid. The ADCP was operated continuously 
throughout the cruise. 

Figure 2     Daily-averaged wind vectors for 1991 from the four central California NDBC buoys 

located near Bodega Bay, Gulf of the Farallones, Half Moon Bay, and Monterey Bay. 
The length of the vector indicates its magnitude (scale in upper right comer) and its 
direction indicates the direction the wind was blowing towards. Gaps in the record are 
periods when no data from the buoy were available. The shaded bars in the figure 
denote the four survey periods in 1991; 13-18 February, 16-21 May, 12-18 August, 
and 29 October-3 November. 

Figure 3     Daily-averaged water temperature, air temperature, north wind component, and 
barometric pressure for 1991 observed at the Gulf of the Farallones NDBC buoy. The 
shaded bars in the figure denote the four survey periods in 1991; 13-18 February, 16- 
21 May, 12-18 August, and 29 October-3 November. 

Figure 4     Satellite AVHRR sea surface temperature (SST) imagery from 16 February, 15 May, 
and 2 November 1991 and 4 February 1992 for the Central California Coast from 

Point Conception to north of Point Reyes. The same enhancement was used for all 
four images and the temperature scale showing the color at even degrees of 
temperature is indicated in the upper right comer. The black straight lines on the 

images indicate 1° latitude-longitude squares and the two meandering black lines are 
the 200 and 1000 m isobaths. The primary region of interest lies within the two boxes 
formed by 37° to 38° N latitude and 122° to 124° W longitude. An image is presented 
for each of the five research cruises except for August 1991, when no clear images 
were available. 

Figure 5a    ADCP current vectors from 15-23 m depth as observed during the CTD survey portion 
of the five research cruises.   Each vector is a 5 kilometer average whose length 

represents the current magnitude and direction represents the direction the current is 
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flowing towards. The scale for all five plots is the same, and is indicated in the lower 

right comer of each panel. The units are cm s*1. 

Figure 5b   As in Figure 5a, except the vectors are from 71 -79 m depth. 

Figure 5c    As in Figure 5a, except the vectors are from 199-207 m depth. 

Figure 6     Along (left panels) and across (right panels) transect flow along ADCP survey line ab 
during the February 1991 (top panels) and August 1991 (bottom panels) surveys. 
Contours are drawn every 5 cm s*1. A positive sign indicates northward and onshore 

flow for the along- and across-transect velocity sections, respectively. 

Figure 7     Across-transect velocity through Section A during August 1991 and Section B during 
February 1992. Contours are every 5 cm S"1 with positive flow into the page 
(poleward) and negative flow out of the page (equatorward). Strong jets of poleward 

flow centered near 100 m depth are clearly visible in both panels. 

Figure 8     Dynamic thickness of the a) 0 to 200 dbar layer and b) 200 to 500 dbar layer for each 
of the five Farallones cruises. The contour intervals are in units of 1 dynamic cm. 
Assuming the lower boundary is a level surface (constant geopotential), the baroclinic 
currents would flow with greater dynamic thickness on the right, and arrows on the 

plots have been drawn accordingly. 

Figure 9     Drift paths of the four ARGOS-tracked surface buoys deployed during the Farallones 
cruises.   The buoys had 8-m long "holey sock" drogues centered near 10 m, and thus 
represent the flow in the upper mixed layer of the ocean. The numbers on the plot 
indicate the position of each drifting buoy in Julian days from January 1,1991. The 
symbols used to plot each float are: launched 20 May 1991 - triangles, launched 16 
August 1991 - dots, launched 1 November 1991 - crosses, and launched 11 February 

1992 - diamonds. 

Figure 10a Composite T-S diagram using the temperature and salinity data from all five cruises. 
Symbols represent the five different cruises as indicated in the legend. The features of 

this plot are discussed in the text. 
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Figure 10b As in Figure 10a, with the scale expanded to more clearly reveal the T-S structure of 
the upper ocean. The solid circles indicate the San Francisco Bay outflow water 
during February 1991, August 1991, and October-November 1991, and the dotted 

circles indicate the cold, fresh water located offshore during August 1991 and 

February 1992. 

Figure 11    Near-surface a) temperature, b) salinity, and c) density fields, for the May 1991 
cruise. Contour intervals are in 0.25 °C, 0.10 psu, and 0.10 kg nr3 respectively. 

Figure 12   Near-surface a) temperature, b) salinity, and c) density fields, for the February 1991 
cruise. Contour intervals are in 0.25 °C, 0.10 psu, and 0.10 kg nr3 respectively. 

Figure 13   Near-surface salinity field from a) August 1991, b) November 1991, and c) 
February 1992.   Contour intervals are in units of 0.10 psu. 

Figure 14   Average values of temperature and salinity computed for each cruise at each of the 
standard depths (20, 80, 200, and 500 m) over the continental slope and at 20 and 
80 m over the outer continental shelf (open symbols), and historical mean values for 
each month at the same levels (solid symbols). The historical values are from the 
atlas of Churgin and Halminski, 1974. The numerical values for each point are also 
shown in Table 1. The waters were anomalously cold and salty during May 1991 

and were anomalously warm and fresh during February 1992. 
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